
1

publishing

Science of Maintenance

Journal homepage www.m-sci.rs

ISSN 2787-3072

1-2 (2021) 1

Maintenance and maintainability within agile software development

Milena Vujosevic Janicic
University of Belgrade, Faculty of Mathematics, Belgrade, Serbia

Abstract Key words

In agile software development, software maintenance is present
almost from the beginning of software development life cycle and is
usually considered together with software evolution. Making
changes in software, either as corrective, preventive, adaptive or
perfective maintenance, comes with additional risks and costs. In
this paper, we discuss formal static software verification approaches
and their influence on triggering software maintenance processes
and on lowering costs and risks through automating regression
verification checks. We also discuss software maintainability as a key
software quality attribute in context of the overall software quality
and describe the effects of software refactoring to maintainability.
We present formal static verification approaches that can support
the refactoring process.

software maintenance;
maintainability;
software verification;
software refactoring;

Corresponding author
milena@matf.bg.ac.rs

Article info

Original Scientific Paper
Received 3 March 2021
Accepted 7 May 2021
Online available 15 September 2021
Open access article CC BY license

1. Introduction
Over the past years, IT industry is rapidly evolving
and is one of the most growing industries worldwide.
Software is developed for the large variety of
different consumer devices and purposes, including
internet of things, virtual and augmented reality,
gaming and entertainment, smart environments,
consumer healthcare, artificial intelligence and big
data, and communication technologies. With an
increasing software production trend, software
engineering processes that emphasize an
acceleration of software delivery are getting more
attention, and agile software development
approaches are being rapidly enhanced. Common
software development life cycle (SDLC) includes
planning, analysis, design, implementation,
testing/integration and maintenance [49, 62]. While
in traditional models of software development, all
these phases used to be clearly separated over
involved actors and allocated time, within agile
software development, where software engineers
and customers work together on the products,
software maintenance becomes tightly integrated
into other development processes, and software

maintenance and software evolution are commonly
considered together [74].

According to ISO/IEC 14764 standard [40], software
maintenance is divided into four categories.
Corrective and preventive categories are concerned
with fixing existing bugs in software. If a bug is
reported by customers, then fixing it corresponds to
corrective maintenance, while if a bug is observed
and fixed by a software developer or maintainer, this
corresponds to preventive maintenance. Adaptive
and perfective categories are concerned with
proactive software enhancements. Adaptive
maintenance keeps the software usable, by making
modifications ac- cording to evolving changes in the
overall software environment. Perfective
maintenance keeps the software quality, especially
quality related features that influence software
maintainability. Maintainability is a software quality
attribute that represents the capability to efficiently
in- corporate the code changes [75] corresponding to
software maintenance categories, that include
correcting faults, improving performance issues,
adapting the software to a changed customer
requirement or a changed environment.
Maintainability assumes several subattributes,

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

2

including testability, as the process of correcting
software issues may introduce new ones. Therefore,
software testing is a part of software maintenance,
while high testability implies high maintain- ability
and vice versa, i.e. these two software quality
attributes mutually reinforce each other. As software
design and the overall quality decreases over time
[52, 65], it is necessary to apply different techniques
to preserve maintainability. Software refactoring is a
process of improving design of an existing code and
is an important part of keeping maintainability
through software evolution [29].

In this paper, we discuss software evolution and
maintenance within agile SDLC with an emphasis on
continuous delivery (Section 2). We present
connections between maintenance and verification
and validation processes and show influences of the
newest formal verification approaches on software
maintenance (Section 3). We give a brief overview of
software quality attributes and characterize
maintainability as one of the key software quality
attributes that unifies modularity, reusability,
analyzability, modifiability, and testability (Section
4). We present software refactoring principles as a
driving force for keeping maintainability through
software evolution, giving an insight to novel tools
and research that can support the refactoring process
(Section 5).

2. Software maintenance and evolution
within SDLC

Software maintenance and evolution are strongly
connected concepts [74, 61] and are usually
considered together. While maintenance is a common

engineering concept, software evolution is
recognized in 1965, and is used to describe the way
the software grows and evolves over time [38]. The
main goals of maintenance are to fix and prevent
different kinds of failures. Maintenance used to be
considered as a set of activities that are conducted
after delivery of software to customers, but with
modern software development approaches that
includes early and continuous software delivery,
maintenance can also be present during software
development. The goals of software evolution are to
evolve and enhance software by implementing new
functionalities or by adapting and improving the
existing functionalities. In general, maintenance does
not introduce major changes to the system, while
evolution can introduce substantial changes.

Software development life cycle (SDLC) defines
processes that are followed in software pro- duction
[49]. The main aim is to produce and maintain high-
quality software that corresponds to customer
expectations, within time and cost estimates.
International standard ISO/IEC 12207 defines
software life-cycle processes including both initial
development and maintenance of software. Each
project has a unique combination of requirements,
environment, involved engineers and customers.
SDLC model should always be carefully chosen and
adapted to a concrete project. Basic SDLC models
include the waterfall model, the V-model, the itera-
tive/spiral model and prototyping [62]. Modern SDLC
models emphasize continuous software delivery. The
waterfall model and the iterative model are
presented in Figure 1.

Figure 1: The waterfall SDLC model (left) and iterative SDLC model (right)

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

3

The waterfall model is the first developed SDLC
model [62]. It defines basic software development
phases that are still present in all modern structured
SDLC models. In the waterfall model, the phases are
accomplished sequentially, there is no overlapping
between the phases and the outcome of one phase is
the input for the next phase. SDLC starts with
requirement gathering and analysis, which specifies
the system that should be developed. It continues
with system design which defines the overall system
architecture, built within the implementation phase
and integrated and tested within the next phase.
Finally, once the system is integrated and tested, it is
deployed in the expected environment, and after its
deployment, the maintenance phase begins. This
model predicts possible issues that should be fixed
and maintenance is done to deliver all the necessary
changes to the customer. Waterfall model is
applicable only if a set of very strict conditions are
satisfied, and in such cases has many advantages, but
also important disadvantages including a big risk and
uncertainty. The V-model [62] is an extension of the
waterfall model which emphasize the importance of
verification and validation by adding a testing phase
for each mentioned development phase. While
testing after each phase reduces the overall risks of a
project failure, this model is also considered to be
with high risk. Software prototyping model
emphasize the importance of software validation in a
timely manner, and relies on building software
prototypes which display the user oriented
functionalities of the built system. The built
prototype might be completely unconnected to the
implementation of the final product. The customer
reviews are then used to build the final software
solution.

In traditional iterative model, different development
phases are repeated sequentially, while in the spiral
model, the waterfall phases are repeated iteratively,
building the overall system in an incremental
manner, until the software is finally completed and
released, and the maintenance phase begins.
However, within modern iterative models,
maintenance and evolution activities usually exist
within software development and are closely
intertwined with development.

Traditional view of SDLC where maintenance is a
single step at the end of the development cycle is
misleading [64]. Modern development usually
incorporates maintenance within standard
development activities and development
requirements usually imply rapid and continuous
software delivery. Software maintenance can also
have its own life cycle, SMLC, that roughly consists of
understanding the code, modifying the code and
revalidating the code [7]. Different variations of SMLC
are available in literature [1, 14, 15, 87].

There are two maintenance standards, ISO/IEC
14764 [40] which is a part of the standard ISO/IEC
12207 [41], and the maintenance standard IEEE/EIA
1219 [20]. These standards organize the
maintenance activities within software development
phases, and maintenance is a part of problem
identification, analysis, design, implementation,
testing and delivery.

Methodologies that emphasize rapid and continuous
software delivery include rapid appli- cation
development model and agile model. Rapid
application development model is based on
prototyping and iterative development but with no
strict and specific phases within the development
process. Agile SDLC is an iterative and incremental
model which focuses on process adaptability,
customer satisfaction and rapid delivery. The
software product is usually broken into small parts
which can be incrementally built within
approximately two weeks. Within this period of time,
all software development phases are conducted, the
current version of software is built and usually
deployed and also given to customers. Customers can
review and use each deployed version of software
and therefore the maintenance phase is an integral
part of software development process. In this
scenario, it can be very difficult to split between
development and maintenance, as development is
guided by customer’s experience with the current
version of software. Common maintenance issues,
such as corrections and enhancements of software,
are a crucial part of software development and define
software evolution.

An important difference between maintenance and
development activities that allows their
differentiation is that development is usually driven
by well defined system requirements while
maintenance is driven by ongoing events [48]. Events
that can trigger software maintenance include, for
example, a change of request from a customer,
software failure or usage related is- sues. Fixing a bug
can be initiated both by a customer and by a software
developer, depending on a nature and consequences
of the discovered issue. Discovering a bug in a system
or realizing needs for changes can occur at any time,
and, therefore, events that trigger maintenance
activities cannot be predicted in advance.

3. Enhancing maintenance with formal
verification approaches

Fixing existing bugs and preventing new bugs are
activities corresponding to corrective part of
software maintenance. On the other hand, finding and
fixing bugs are activities that correspond to software
verification and validation (V&V) processes.
Therefore, software maintenance and V&V are
strongly connected.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

4

Testing corresponds to dynamic program analysis
and is usually used as a synonym for V&V. There are
different approaches to testing [58, 22]. Only a subset
of existing testing techniques is applied on a software
project, depending on the system requirements and
the overall project characteristics. Testing can be
done on the lowest implementation level,
corresponding to unit testing, on integration level,
corresponding to component and integration testing,
and on system level, corresponding to system testing.
System testing also includes exploratory testing,
acceptance testing and different kinds of
nonfunctional testing techniques, like configuration
testing, capacity testing, compatibility testing,
performance testing, regression testing, security
testing, and installation testing.

There are many tools and frameworks that assist and
automate different kinds of testing. For example,
support for automated running of unit tests is usually
part of integrated software development
environment, while for automating testing of web
applications there are tools like Selenium [21],
Katalon [43] and TestComplete [66]. On the other
hand, there are aspects of software that cannot be
automatically assessed, like, for example, learnability
[77].

However, testing is only one part of V&V approaches,
and there are also important approaches for checking
correctness of software without its execution, namely
by using static program analysis. Static program
analysis includes code reviews and automated
approaches. Code reviews are very important for
achieving high software quality, especially in the
context of code maintainability [19]. By code reviews
it is checked if there are some errors in code logic, if
all important cases are covered by implementation, if
the code is covered with appropriate test cases, if the
code follows corresponding project’s coding
standards, if there exists a better solution or more
efficient algorithm that can be used. Code reviews can
be more or less formal, and include formal
inspections, over-the-shoulder reviews, e-mail pass-
around, tool-assisted reviews and pair programming.
There are many tools that assist code review process,
like Phabricator [39], Gerrit [33], and Review board
[6].

Automated approaches for static program analysis
include code linters and more sophisticated tools, i.e.
formal static analysis tools, usually based on
traditional artificial intelligence approaches. Code
linters look for stylistic errors, suspicious constructs,
security issues, code smells and usually can spot only
some simple programming errors. Linters are usually
based on syntax analysis [54], while more
sophisticated tools perform semantic analysis of
code.

There are different formal approaches for automated
checking of semantic properties of a given program.
Properties of interest include, for example, finding
bugs that can raise run-time errors, like buffer
overflows, division by zero or type mismatches. Most
common approaches are abstract interpretation [24],
symbolic execution [47], and model checking [18]
and there are many tools based on these approaches.

Abstract interpretation scales well on huge code
repositories. It does not give precise results, i.e. it can
have false positive results but cannot give witnesses
for violated properties. Abstract interpretation-
based tools, in the absence of reported bugs,
guarantee the absence of possible bugs in the
examined code. Therefore, the usage of such tools is
required in development of safety critical software.
Examples of tools include Astree [10], Coverty [8] and
Polyspace Bug Finder [26].

Symbolic execution generalizes testing and
corresponds to static execution of a program with
symbolic instead of concrete values [3]. It is used for
both automated bug finding and automated test-case
generation. Symbolic execution uses SAT/SMT
solving [9] or custom built solvers. Examples of tools
based on symbolic execution are KLEE [13],
Microsoft’s PEX [73] and SAGE [34].

Model checking is a formal verification approach,
originally developed for checking correct- ness
properties of hardware systems, but it is now widely
used for software systems as well [18]. Model
checking can be explicit-state or symbolic. Explicit-
state model checking enumerates and explores all
possible states of a system, while symbolic model
checking represents sets of states symbolically and
uses SAT/SMT solving or binary decision diagrams.
Model checking can give witnesses for violated
properties that can be used for automated test case
generation. Tools based on model checking include
CBMC [17], LLBMC [53], ESBMC [23], Java Path-
Finder [76].

Combination of formal approaches can also be
used for automated checking of semantic properties.
For example, LAV [79, 80, 83, 82, 78, 67] is a publicly
available, open source, general purpose LLVM-based
[51] tool. For constructing correctness conditions, it
combines different techniques including symbolic
execution, model checking and SAT encoding of
program’s control-flow. As an underlying reasoning
machinery, for solving conditions, it uses SMT solvers
and supports usage of Z3 [25], Yices [27], MatSat [12]
and Boolector [11].

The presented approaches and tools can help in
finding bugs and trigger and support both corrective
activities of software maintenance. However, fixing
one bug may introduce another bug and software
maintenance should prevent such situations, i.e.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

5

should preserve functional software equivalence
between the old and the fixed version of code.
Checking if some functional property is preserved
between two versions of code is called regression
verification [70, 69, 2] and is usually done by
regression testing. Formal verification of equivalence
of two programs is an undecidable problem.
However, some simple but still very useful properties
can be automatically proved and formal static
analysis tools can be used to contribute to this issue.
For example, one such property is k-equivalence and
the tool LAV is successfully used in the context of
regression verification [82, 67].

4. Maintainability as a key quality attribute
Software quality is a degree to which software
product possesses the desired set of software quality
attributes [5, 86]. Software quality is achieved
through:

Assurance — incorporating quality aspects in
everyday work, and

Control — ensuring that the obtained outputs are of
the desired quality.

Software quality assurance [50, 36, 31] subsumes
processes that have in focus acquiring and keeping
software quality. It monitors and assures that all
other processes, methods and activities used within a
project ensure desired quality of software. The
desired quality may be defined by software
requirements, or can be defined as an externally
quality standard like, for example, ISO 9000 or ISO
15504. Software quality control includes software
verification and validation processes. Depending on
the purpose and aims of the software, each software
quality attribute may have different importance level.
Software quality attributes, defined by standard ISO
25010 are presented in Fig. 2.

Figure 2: ISO/IEC 25010 categorization of software quality requirements [42]

Maintainability is considered as a key quality
attribute [75] as it describes the capability of
software to be modified and improved, i.e. its
possibility to outlive unpredictable future challenges.
Making a change in software requires:

1. understanding the software;
2. finding locations in software that need to be

changed;
3. making desired changes;
4. checking that changes have not broken the

existing code.

Maintainability addresses the easiness of all these
steps. As maintainability is a static quality attribute,
it cannot be assessed by testing, and different static
metrics have to be considered. Some examples of

static software metrics that are important in the
context of maintainability are coupling (quantitative
measure of interdependencies between different
modules), cohesion (quantitative measure of
interconnection between functions or objects of a
same module), cyclomatic complexity (quantitative
measure of the number of linearly independent
control flow paths) and size (number of lines of code).
Namely, low coupling, high cohesion, low cyclomatic
complexity and small size are characteristics of a
maintainable software.

According to ISO 25010 standard, maintainability is
divided into five subattributes: modularity,
reusability, analyzability, modifiability and
testability.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

6

4.1. Modularity

Modularity refers to a degree in which logical
partitioning into independent and interchange- able
modules is present within software. Breaking
software into modules (units, components) allows
hiding the overall software complexity (by
abstraction and interface). Modules should be of
relatively small size, with low cyclomatic complexity,
high cohesion and there should be low coupling
between modules. Such modules then can be
separated and flexibly recombined in a numerous
way. Modularity assumes standardized interfaces
between modules, which are emphasized within
modern software architectures such as microservices
[59]. Modularity im- pacts the easiness of
understanding software and also the easiness of
finding and implementing changes within software. It
is usually set as one of the main goals of software
design phase.

4.2. Reusability

Reusability refers to a degree in which components of
one system can be used within other systems. There
are different levels of reusability, including
specification reuse, design reuse, code reuse, data
reuse, application system reuse, and test reuse.
Reusability is of crucial importance in the context of
making desired changes [32, 56], as instead of
developing new functionalities from scratch, it
should always be considered if some existing
components can be reused. Reusability is directly
connected to modularity, as high quality modularity
is a prerequisite to software reusability. Reusability
is also coupled with analyzability, including interface
complexity and documentation, as it is important to
easily understand the component that should be
reused. Main benefits of software reusability include
an increase of productivity, costs minimization,
quality improvement, development acceleration and
process risk reduction [30, 63, 4].

4.3. Analyzability

Analyzability refers to easiness of analyzing and
understanding the software. Therefore, it impacts the
first two steps of making a change in software
(understanding the software and finding locations in
software that need to be changed). Analyzability is
connected to modularity, as good modularity reduces
complexity and therefore improves analyzability. It is
also connected to reusability, as reusing existing
software components can make the analysis of code
much easier. High cohesion and low coupling
positively influence code analyzability, as in such
code programming logic concerning one aspect of
system is strongly localized. Similarly, low size and
cyclomatic complexity also positively influence code
analyzability, as it is easier to analyze and understand
smaller and non-complex portions of code. For high

analyzability, the code should be well documented,
and should adopt and follow chosen coding
standards. Following coding standards should be
enforced by code reviews and by code linters. High
analyzability is a consequence of both high quality
design and how quality coding.

4.4. Modifiability

Modifiability refers to the easiness of implementing
desired changes within software, without
introducing new bugs and issues. Coupling is a key
metric for modifiability, as high coupling implies
changes that are spread out the code and that easily
introduce new bugs. There are different aspects of
coupling that should be considered, including return
value coupling, parameter coupling, and shared
variable coupling [44]. System modularity improves
modifiability, as modularity hides system complexity
and with low coupling makes changes more localized.
For increasing modifiability, there are different
techniques that reduce intracomponent coupling, like
introducing layers that separate different technical
responsibilities, for example, separating into
different layers responsibilities such as business logic
and data access. Layers give the opportunity of
separating maintenance issues and also positively
influence reusability. However, layers do not
positively influence performance, as the many
interfaces and communication between components
slow down the efficiency. Modifiability is very tightly
connected with testability, as without good testability
it is not easy to check if a modification implied some
new issues.

4.5. Testability

Testability refers to the easiness of checking if
changes have not broken the existing code.
Testability is influenced by project characteristics.
Gathering test cases is usually done manually, but in
some special cases tests can be generated
automatically [13, 34, 72, 71, 55]. However, if an
oracle function is not available, for example when the
result of computation is not known in advance, then
testing such application is more difficult and only
some special kinds of testing, like metamorphic
testing [16], are available. Software can be tested on
different levels, and some levels can be automated,
like unit testing, while some kinds of testing have to
be done manually, like acceptance or exploratory
testing. If large portions of testing can be run
automatically, that improves testability. Testability
directly influences the end users as high testability
im- pacts deliverability. Software that can be
thoroughly tested in a shorter amount of time can get
to users faster and without unexpected failures. Also,
developers benefit from getting feedback more often,
and that allows timely fixes and fast iterations. Test
driven development emphasize importance of

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

7

testability. Testability can be measured by different
metrics, for example, by the number of available test
cases, by the time needed for all tests to be run, and
by different test coverage criteria.

4.6. Enhancing maintainability

To achieve high maintainability, it is important to
include it as a goal of each phase of software
development life cycle. Maintainability can be
enhanced by adopting modern coding standards,
documentation standards and tools that support
automated test case generation and running.
However, as software evolves, it gets more complex,
and the maintainability may decrease if additional
care is not taken in order to keep and improve the
maintainability over the time.

An important technique that can be used for keeping
and improving maintainability is software
refactoring.

5. Improving maintainability with software
refactoring

Software refactoring corresponds to changes of the
code structure that preserve functional equivalence
and aim to make software easier to comprehend and
to modify [52, 29]. Software refactoring is a term
usually used in object oriented programming, while
software restructuring is used in imperative
programming. Although object oriented and
imperative programming differ, there are some
important refactoring/restructuring techniques that
are very similar and used in both cases. In the
following text, we will use the term refactoring.

Refactoring improves software quality concerning all
quality subattributes related to soft- ware
maintainability [45]. The catalogue of software
refactorings includes more than sixty different
refactoring techniques [29]. These techniques can be
divided according to different problems with code
structure, usually called code smells, such as:

Huge functions/methods or modules/classes that
should be separated. Separating code in such context
decreases complexity and therefore directly
improves modularity, reusability and analyzability. It
can also positively influence testability, as smaller
portions of code are easier to test, and indirectly
increase modifiability.

Incomplete or incorrect application of programming
principles, including object-oriented principles,
complex switch statements or sequences of if
statements, wrong usage of code hierarchy or its
absence, and alternative classes/modules with
different inter- faces. Refactorings used for
improving these code features positively influence
reusability, analyzability and modifiability.

Existence of ripple effect that manifests with
necessity of making multiple different changes within
a single class/module or necessity of making a single
change to multiple classes/- modules. Refactorings
used for improving cohesion in this context positively
influence analyzability and modifiability, and can
indirectly influence reusability and modularity.

Code redundancy, like duplicated code, comments,
dead code, and speculative generality. Refactorings
used for removing code redundancy improve
analyzability, modifiability and testability.

Coupling between classes/modules, such as usage of
the internal fields and methods of an- other
class/module and intensive usage of message chains.
Refactorings used for removing coupling improve
reusability, analyzability and modifiability, and
indirectly modularity and testability.

Software refactoring is an everyday practice within
agile software development [67]. Within software
refactoring, programmers should systematically
make small changes in code in order to preserve
software equivalence [52, 29, 57]. Software
refactoring techniques usually affect small and
localized portions of code while some refactorings
are used just for preparing code to the application of
some other refactorings. Each refactoring step should
be followed by thorough testing such that if a bug is
introduced during the refactoring process, it is
noticed and fixed immediately. Good code coverage
by tests is essential for the refactoring process.
However, different surveys showed that refactoring
may involve additional costs and risks [46, 84], and
that programmers need tools that automate and
support this process [65, 85, 37].

Simple code refactorings are integral parts of
integrated software development environments, for
example variable renaming or function renaming.
However, for each such change, a program- mer
should manually check and verify that it is done
correctly. Checking functional equivalence between
two versions of code is an undecidable problem, but
different approaches are developed to assist in this
process [28, 35, 82, 81, 60]. Formal software
verification techniques can be used to enhance
refactoring process. For example, the tool LAV is
successfully used for supporting refactoring steps
that include simultaneous changes of code that
includes different programming languages, namely
C/C++ and embedded SQL [67, 68, 83]. For
automating support of such refactorings it is
necessary to precisely model both imperative
programming within C/C++ programming language
and declarative programming present with SQL code.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

8

6. Conclusions
With an increasing popularity of agile software
development, guided by rapid and continuous
software delivery, software maintenance activities
become an integral part of everyday software
development processes. Therefore, improving
quality of software maintenance results and effects is
becoming even more important.

Maintenance includes fixing the existing bugs and
preventing the new ones and is therefore strongly
connected with software verification activities. It can
be both triggered and supported by software
verification and research results concerning
automating and making verification results more
reliable positively influence software maintenance.
For example, risks and costs that are involved with
making changes within software can be reduced by
using modern formal software verification
approaches that support automated bug finding and
automated equivalence checking.

Maintainability is a key quality attribute that should
be set as a goal of each phase of software
development life cycle. In addition, keeping high
maintainability trough a long lasting software
evolution should be supported by continuous
software refactoring. Software refactoring catalogue
includes a set of good practices that guide changes of
code that do not modify the external software
behaviour but that positively influence the internal
software quality. Applying refactoring techniques
involve possibility for introducing new bugs and
support for regression verification is highly
important to make this process reliable. Regression
testing is commonly used within refactoring process,
but new formal static regression verification
techniques, based on automated checking of code
equivalence, introduce new possibilities and increase
the overall reliability of refactoring changes.

To further support reliability of maintenance
outcomes, it is important to strength static formal
software verification approaches and to introduce
the newest research results into every- day practice.
As most of the problems that are encountered in this
context are undecidable, there will always be a room
for additional heuristics, improvements and
upgrades.

7. References
[1] Lowell Jay Arthur. Software evolution: the

software maintenance challenge. Wiley-
Interscience, 1988.

[2] J. Backes, S. Person, N. Rungta, and O. Tkachuk.
Regression verification using impact
summaries. In International Conference on
Signal Processing and Integrated Networks
(SPIN), pages 99–116, 2013.

[3] Roberto Baldoni, Emilio Coppa, Daniele Cono
Delia, Camil Demetrescu, and Irene Finocchi. A
Survey of Symbolic Execution Techniques. ACM
Computing Surveys, 51(3), 2018.

[4] Rajiv D Banker and Robert J Kauffman. Reuse
and productivity in integrated computer-aided
software engineering: An empirical study. MIS
quarterly, pages 375–401, 1991.

[5] Mario Barbacci, Mark H Klein, Thomas A
Longstaff, and Charles B Weinstock. Quality
Attributes. Technical report, Carnegie-Mellon
University, Software engeineering Institute,
Pittsburgh PA, 1995.

[6] Inc. Beanbag. Review board, 2021.
https://www.reviewboard.org/, retrieved
March 15nd, 2021.

[7] Keith H Bennett and Vaclav T Rajlich. Software
maintenance and evolution: a roadmap. In
Conference on the Future of Software
Engineering, pages 73–87, 2000.

[8] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S.
Hallem, C. Henri-Gros, A. Kamsky, S. Mc- Peak,
and D. Engler. A few billion lines of code later:
using static analysis to find bugs in the real
world. Communications of the ACM, 53(2):66–
75, 2010.

[9] Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS
Press, 2009.

[10] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L.
Mauborgne, A. Min e, D. Monniaux, and X. Rival.
Design and Implementation of a Special-
Purpose Static Program Analyzer for Safety-
Critical Real- Time Embedded Software, invited
chapter. In T. Mogensen, D.A. Schmidt, and I.H.
Sudborough, editors, The Essence of
Computation: Complexity, Analysis,
Transformation. Essays Dedicated to Neil D.
Jones, volume 2566 of Lecture Notes in
Computer Science (LNCS), pages 85–108.
Springer-Verlag, 2002.

[11] Robert Brummayer and Armin Biere. Boolector:
An Efficient SMT Solver for Bit-Vectors and
Arrays. In Tools and Algorithms for the
Construction and Analysis of Systems (TACAS),
volume 5505 of Lecture Notes in Computer
Science (LNCS). Springer, 2009.

[12] R. Bruttomesso, A. Cimatti, A. Franz en, A.
Griggio, and R. Sebastiani. The MathSAT 4 SMT
Solver. In Computer-Aided Verification (CAV),
volume 5123 of Lecture Notes in Computer
Science (LNCS), pages 299–303. Springer, 2008.

[13] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs.
In Operating Systems Design and
Implementation (OSDI), pages 209–224.
USENIX, 2008.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

9

[14] Ned Chapin, Joanne E. Hale, Khaled Md. Kham,
Juan F. Ramil, and Wui-Gee Tan. Types of
software evolution and software maintenance.
Journal of Software Maintenance: Research and
Practice, 13(1):3–30, 2001.

[15] [S Chen, KG Heisler, Wei-Tek Tsai, X Chen, and E
Leung. A model for assembly program
maintenance. Journal of Software Maintenance:
Research and Practice, 2(1):3–32, 1990.

[16] [Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-
Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan
Zhou. Metamorphic testing: A review of
challenges and opportunities. ACM Computing
Surveys, 51(1), 2018.

[17] Edmund Clarke, Daniel Kroening, and Flavio
Lerda. A Tool for Checking ANSI-C Programs. In
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 168–176.
Springer, 2004.

[18] Edmund M. Clarke, Thomas A. Henzinger,
Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer, 2018.

[19] Jason Cohen, Eric Brown, Brandon DuRette, and
Steven Teleki. Best kept secrets of peer code
review. Smart Bear Somerville, 2006.

[20] Software Engineering Standards Committee et
al. IEEE Standard for Software Maintenance.
IEEE Std, pages 1219–1998, 1998.

[21] Software Freedom Conservancy. Selenium
automates browsers, 2021.
https://www.selenium. dev/, retrieved March
15nd, 2021.

[22] Lee Copeland. A practitioner’s guide to software
test design. Artech House, 2004.

[23] Lucas Cordeiro, Bernd Fischer, and Joao
Marques-Silva. SMT-Based Bounded Model
Checking for Embedded ANSI-C Software.
IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages
137–148, 2009.

[24] Patrick Cousot and Radhia Cousot. Abstract
Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or
Approximation of Fixpoints. In Principles of
Program- ming Languages (POPL), pages 238–
252. ACM Press, 1977.

[25] Leonardo De Moura and Nikolaj Bjorner. Z3: An
Efficient SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS), pages 337–340, 2008.

[26] A. Deutsch. Static Verification of Dynamic
Properties, 2003. White paper, PolySpace
Technologies Inc.

[27] B. Dutertre and L. de Moura. The Yices SMT
solver. Tool paper at http://yices.csl.sri.com/
tool-paper.pdf, 2006.

[28] D. Felsing, S. Grebing, V. Klebanov, P. Ru¨mmer,
and M. Ulbrich. Automating Regression Ver-
ification. In IEEE/ACM International Conference

on Automated Software Engineering (ASE),
pages 349–360. ACM, 2014.

[29] Martin Fowler. Refactoring: improving the
design of existing code. Addison-Wesley
Professional, 2018.

[30] John E Gaffney Jr and Thomas A Durek.
Software reuse — key to enhanced
productivity: some quantitative models.
Information and Software Technology,
31(5):258–267, 1989.

[31] Daniel Galin. Software quality assurance: from
theory to implementation. Pearson education,
2004.

[32] Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, and Design Patterns. Elements of
Reusable Object-Oriented Software. Design
Patterns. massachusetts: Addison-Wesley
Publishing Company, 1995.

[33] Gerrit. Gerrit code review, 2021.
https://www.gerritcodereview.com/, retrieved
March 15nd, 2021.

[34] Patrice Godefroid, Michael Y. Levin, and David
Molnar. SAGE: Whitebox Fuzzing for Security
Testing. Queue, 10(1):20:20–20:27, 2012.

[35] B. Godlin and O. Strichman. Regression
verification: proving the equivalence of similar
programs. Software Testing, Verification and
Reliability, 23(3):241–258, 2013.

[36] Stephan Goericke. The future of software
quality assurance. Springer Nature, 2020.

[37] Carsten Gorg and Peter Weiundefinedgerber.
Error Detection by Refactoring Reconstruction.
In International Workshop on Mining Software
Repositories, MSR 05, pages 1–5, New York, NY,
USA, 2005. ACM.

[38] Mark I. Halpern. Machine independence: Its
technology and economics. Communications of
the ACM, 8(12):782–785, 1965.

[39] Phacility Inc. Phabricator: Discuss. plan. code.
review. test., 2021. https://www.phacility.com/
phabricator/, retrieved March 15nd, 2021.

[40] ISO. ISO/IEC 14764:2006 and IEEE Std 14764-
2006, 2006. Software Engineering — Software
Life Cycle Processes — Maintenance. Online at:
https://www.iso.org/obp/ui/#iso:std:iso-iec:
14764:ed-2:v1:en, retrieved March 15nd, 2021.

[41] ISO. IEEE/ISO/IEC 12207-2008, 2008.
ISO/IEC/IEEE International Standard - Systems
and software engineering – Software life cycle
processes. Online at:
https://standards.ieee.org/ standard/12207-
2008.html, retrieved March 15nd, 2021.

[42] ISO. ISO/IEC 25010:2011, 2011. ISO/IEC
Systems and software engineering – Systems
and software Quality Requirements and
Evaluation (SQuaRE) – System and software
quality models. Online at:
https://www.iso.org/standard/35733.html,
retrieved March 15nd, 2021.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

10

[43] Inc. Katalon. An all-in-one test automation
solution, 2021. https://www.katalon.com/,
retrieved March 15nd, 2021.

[44] Yoshio Kataoka, Michael D Ernst, William G
Griswold, and David Notkin. Automated support
for program refactoring using invariants. In
IEEE International Conference on Software
Maintenance (ICSM), pages 736–743. IEEE,
2001.

[45] Amandeep Kaur and Manpreet Kaur. Analysis of
code refactoring impact on software quality. In
MATEC Web of Conferences, volume 57, page
02012. EDP Sciences, 2016.

[46] Miryung Kim, Thomas Zimmermann, and
Nachiappan Nagappan. An Empirical Study of
Refactor- ing Challenges and Benefits at
Microsoft. IEEE Transactions on Software
Engineering, 40(7):633– 649, 2014.

[47] James C. King. Symbolic Execution and Program
Testing. Communications of the ACM,
19(7):385–394, 1976.

[48] Barbara A Kitchenham, Guilherme H Travassos,
Anneliese Von Mayrhauser, Frank Niessink,
Nor- man F Schneidewind, Janice Singer, Shingo
Takada, Risto Vehvilainen, and Hongji Yang.
Towards an ontology of software maintenance.
Journal of Software Maintenance: Research and
Practice, 11(6):365–389, 1999.

[49] Ralf Kneuper. Software Processes and Life Cycle
Models. Springer, 2018.

[50] Claude Y Laporte and Alain April. Software
quality assurance. John Wiley & Sons, 2018.

[51] Chris Lattner and Vikram Adve. LLVM: A
Compilation Framework for Lifelong Program
Analysis & Transformation. In Symposium on
Code Generation and Optimization (CGO), pages
75–86. IEEE Computer Society, 2004.

[52] Tom Mens and Tom Tourwe. A Survey of
Software Refactoring. IEEE Transactions on
Software Engineering, 30(2):126–139, 2004.

[53] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded
Model Checking of C and C++ Programs Using a
Compiler IR. In Verified Software, Theories,
Tools and Experiments (VSTTE), Lecture Notes
in Computer Science (LNCS), pages 146–161.
Springer, 2012.

[54] Djordje Milicevic, Mirko Brku sanin, Milena
Vujosevic Janiic, Teodora Novkovic, and Petar
Jovanovic. Unapredjenje programskog
prevodioca Clang sa podr skom za standard
MISRA/AU- TOSAR. In Etran, pages 906–910.
ETRAN Society, 2019.

[55] B. P. Miller, L. Fredriksen, and B. So. An
Empirical Study of the Reliability of UNIX
Utilities. Communications of the ACM,
33(12):32–44, 1990.

[56] Chahat Monga, Aman Jatain, and Deepti Gaur.
Impact of quality attributes on software
reusabil- ity and metrics to assess these
attributes. In IEEE International Advance

Computing Conference (IACC), pages 1430–
1434. IEEE, 2014.

[57] E. Murphy-Hill, C. Parnin, and A. P. Black. How
we refactor, and how we know it. IEEE
Transactions on Software Engineering, 38(1):5–
18, 2012.

[58] Glenford J Myers, Tom Badgett, Todd M
Thomas, and Corey Sandler. The art of software
testing, volume 2. Wiley Online Library, 2004.

[59] Sam Newman. Building microservices:
designing fine-grained systems. O’Reilly Media,
Inc., 2015.

[60] H. Post and C. Sinz. Proving Functional
Equivalence of Two AES Implementations Using
Bounded Model Checking. In Software Testing,
Verification and Validation (ICST), pages 31–40,
2009.

[61] Vaclav Rajlich. Software evolution and
maintenance. In Future of Software Engineering
Proceed- ings, FOSE 2014, pages 133–144, New
York, NY, USA, 2014. ACM.

[62] Nayan B. Ruparelia. Software development
lifecycle models. ACM SIGSOFT Software
Engineering Notes, 35(3):8–13, 2010.

[63] Stephen R Schach. The economic impact of
software reuse on maintenance. Journal of
Software Maintenance: Research and Practice,
6(4):185–196, 1994.

[64] Norman F. Schneidewind. The state of software
maintenance. IEEE Transactions on Software
Engineering, 1(3):303–310, 1987.

[65] Danilo Silva, Nikolaos Tsantalis, and Marco
Tulio Valente. Why We Refactor? Confessions of
GitHub Contributors. In ACM SIGSOFT
International Symposium on Foundations of
Software Engineering, FSE 2016, pages 858–
870, New York, NY, USA, 2016. ACM.

[66] SmartBear Software. Automated ui testing that
covers you from device cloud to packaged apps,
2021.
https://smartbear.com/product/testcomplete/,
retrieved March 15nd, 2021.

[67] Mirko Spasic and Milena VujosevicJanicic.
Verification supported refactoring of embedded
SQL, Software Quality Journal, pages 1–37,
2020.

[68] Mirko Spasic and Milena VujosevicJanicic.
GitHub repository: SQLC, 2020. https://github.
com/mirkospasic/sqlc, retrieved March 15th,
2021.

[69] Ofer Strichman. Special issue: program
equivalence. Formal Methods in System Design,
52(3):227– 228, 2018.

[70] Offer Strichman and Benny Godlin. Regression
Verification - A Practical Way to Verify
Programs. In Verified Software, Theories, Tools
and Experiments (VSTTE), volume 4171 of
Lecture Notes in Computer Science (LNCS),
pages 496–501. Springer, 2005.

Milena Vujosevic Janicic - Maintenance and maintainability within agile software... Science of Maintenance 1-2 (2021) 1

11

[71] M. Sutton, A. Greene, and P. Amini. Fuzzing:
Brute Force Vulnerability Discovery. Pearson
Education, 2007.

[72] A. Takanen, J. DeMott, and C. Miller. Fuzzing for
Software Security Testing and Quality Assur-
ance. Artech House, Inc., Norwood, MA, USA, 1
edition, 2008.

[73] Nikolai Tillmann and Jonathan Halleux. Pex –
White Box Test Generation for .NET . In Tests
and proofs (TAP), volume 4966 of Lecture
Notes in Computer Science (LNCS), pages 134–
153. Springer, 2008.

[74] Priyadarshi Tripathy and Kshirasagar Naik.
Software evolution and maintenance: a
practitioner’s approach. John Wiley & Sons,
2014.

[75] Ervin Varga. Unraveling Software Maintenance
and Evolution. Springer, 2018.

[76] Willem Visser, Klaus Havelund, Guillaume Brat,
Seungjoon Park, and Flavio Lerda. Model
Checking Programs. Automated Software Eng.,
10(2):203–232, 2003.

[77] Dusan Vujosevic, Ivana Kovacevic, and Milena
VujosevicJanicic. The learnability of the dimen-
sional view of data and what to do with it. Aslib
Journal of Information Management, 2019.

[78] Milena Vujosevic Janicic. Concurrent Bug
Finding Based on Bounded Model Checking.
Interna- tional Journal of Software Engineering
and Knowledge Engineering, 30(05):669–694,
2020.

[79] M. Vujosevic Janicic and V. Kuncak.
Development and Evaluation of LAV: An SMT-
Based Error Finding Platform. In Verified
Software, Theories, Tools and Experiments
(VSTTE), Lecture Notes in Computer Science
(LNCS), pages 98–113. Springer, 2012.

[80] M. Vujosevic Janicic, M. Nikolic, D. Tosic, and V.
Kuncak. Software verification and graph

similarity for automated evaluation of students
assignments. Information and Software
Technology, 55(6), 2013.

[81] Milena Vujosevic Janicic. Regression verification
by system LAV. InfoM — Journal of Information
Technology and Multimedia Systems, 49:14–20,
2014.

[82] Milena Vujosevic Janicic and Filip Maric.
Regression verification for automated
evaluation of students programs. Computer
Science and Information Systems, 17(1):205–
228, 2020.

[83] Milena Vujosevic Janicic and Mirko Spasi c.
Tools LAV and SQLAV, 2020. http://argo.matf.
bg.ac.rs/?content=lav, retrieved March 15th,
2021.

[84] Peter Weißgerber and Stephan Diehl. Are
refactorings less error-prone than other
changes? In International workshop on Mining
software repositories, pages 112–118, 2006.

[85] Peter Weißgerber and Stephan Diehl.
Identifying Refactorings from Source-Code
Changes. In IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE
06, pages 231–240, USA, 2006. IEEE Computer
Society.

[86] S. S. Yau and J. S. Collofello. Some stability
measures for software maintenance. IEEE
Transac- tions on Software Engineering,
6(6):545–552, 1980.

[87] Ren Yongchang, Xing Tao, Liu Zhongjing, and
Chen Xiaoji. Software maintenance process
model and contrastive analysis. In International
Conference on Information Management,
Innovation Management and Industrial
Engineering, pages 169–172, USA, 2011. IEEE
Computer Society.

